A DIVISION OF =2 CIRRUS LOGIC®

ANB8S8

Application Note
Interfacing the CS5525/6/9 to the PIC16F84

By Keith Coffey

The ADC'’s serial port consists of four control
lines: CS SCLK, SDIl,and SDO.

INTRODUCTION

This application note details the interface of Crys-
tal Semiconductor's CS5525/6/9 Analog-to-Digi-Cs, Chip Select, is the control line which enables
tal Converter (ADC) to the MinOChip PIC16 access to the serial port_

microcontroller series. This note takes the reader

through a simple example describing how to comSCLK, Serial Clock, is the bit-clock which controls
municate with the ADC. All algorithms discussedthe shifting of data to or from the ADC'’s serial
are included in théAppendix at the end of this Port.

note. : . .
SDI, Serial Data In, is the data signal used to trans-

ADC DIGITAL INTEREACE fer data from the PIC16F84 to the ADC.

The CS5525/6/9 interfaces to the PIC16F84DO, Serial Data Out, is the data signal used to

through either a three-wire or a four-wire interfacetransfer output data from the ADC to the

Figure 1 depicts the interface between the two dd?IC16F84.

vices. Though this software was written to inter-

face to Port A (RA) on the PIC16F84 with a four-SOFTWARE DESCRIPTION

wire interface, the algorithms can be easily modiThis note presents algorithms to initialize the

fied to work with the three-wire format. PIC16F84 and the CS5525/6/9, perform a self-off-
set calibration, modify the CS5525/6/9 gain regis-
ter, and then acquire a conversion. Figure 2 depicts

CS5525/6/9 PIC16F84 CS5525/6/9 PIC16F84

Cs T NC (RAO) CS <+— RAO

SDI +— RA1l SDI +— RA1l

SDO ——— | RA2 SDO —— P RA2

SCLK 4— RAS3 SCLK 4— RAS3

Figurel. 3-Wireand 4-Wire Interfaces
Cirrus Logic, Inc.

Crystal Semiconductor Products Division Copyright O Cirrus Logic, Inc. 1997 NOV ‘97
P.O. Box 17847, Austin, Texas 78760 (All Rights Reserved) ANSSRev?2

(512) 445 7222 FAX: (512) 445 7581

http.//www.crystal.com

1

y 4 Y I17 J J [A
F P AN88

a block diagram overview. While reading thisap- Self-Offset Calibration
plication note, please refer to the Appendix for the

. Calibrate is a subroutine that calibrates the con-
code listing.

verter's offset. Calibrate first sends 0x000001
Initialize (Hex) to the configuration register. This instructs
o . . the converter to perform a self-offset calibration.
Initialize is a subroutine that configures Port A t1an the Done Flag (DF) bit in the configuration
(RA) on the PIC16F84 and places the CS5525/6/9 ¢ gister is polled until set. Once DF is set, it indi-

in the command-state. First, RA's data direction igaes that a valid calibration was performed. To

configured as depicted in Figure 1 (for more inforyy,nimize digital noise (while performing a calibra-

mation on configuring ports refer.to Microchip’s tion or a conversion), many system designers may
PIC16F8X Data Sheet). After configuring the port 4 it advantageous to add a software delay equiv-

the controller enters a delay state to allow time f04,.t 10 a conversion or calibration cycle before
the CS5525/6/9's power-on-reset and oscillator Bolling the DF bit.

start-up (oscillator start-up time is typically 500

ms). The last step is to reinitialize the serial port oiRead/Write Gain Register

the ADC (reinitializing the serial port is unneces- . .)

sary here, it was added for demonstration purposd® Medify the gain register the command-byte and
only). This is implemented by sending the convertgata'b_yte variables are first initialized. This is ac-
er sixteen bytes of logic 1's followed by one finalCOMPlished by the MOVLW and MOVWF op-

byte, with its LSB logic 0. Once sent, the sequencE2des- The subroutinerite register uses these
variables to set the contents of the gain register in

places the serial port of the ADC into the com- _
mand-state, where it awaits a valid command. e CS5525/6/9 to 0x800000 (HEX). To do this,
write register first asserts CSand then it calls
After returning tomain, the software demonstratessend _spi four times (once for the command-byte
how to calibrate the converter’s offset. and three additional times for the 24 bits of data).
Send_spi is a subroutine used to ‘bit-bang’ a byte of
@ information from the PIC16F84 to the CS5525/6/9.
A byte is transferred one bit at a time, MSB (most
significant bit) first, by placing an information bit

INITIALIZE on RA1 (SDI) and then pulsing RA3 (SCLK). This
MICROCONTROL L ER/CS5525/6/9 process is repeated eight times. Figure 3 depicts the
v timing diagram for the write-cycle in the CS5525/
6/9’s serial port. This algorithm demonstrates how
SELF-OFFSET CAL. to write to the gain register. It does not perform a
v gain calibration. To perform a gain calibration, fol-
low the procedures outlined in the data sheet.
MODIFY GAIN
To verify if 0x800000 (HEX) was written to the
gain registerread _register is called. It duplicates
the read-cycle timing diagram depicted in Figure 4.
ACQUIRE CONVERSION j Read register first asserts CSand then calls
send_spi once to transfer the command-byte to the
Figure 2. CS5525/6/9 Softwar e Flowchart CS5525/6/9. This places the converter into the

2 ANB88Rev2

y 4 Y I17 J J [A
F P AN88

data-state where it waits until dataisread fromits bit in the configuration register is polled. When set,

seria port. To receivethe data, read register calls DF indicates that a conversion was performed.

receive_spi threetimes. Recelve_spi isasubroutine Once DF is set, the controller reads the conversion
used to ‘bit-bang’ a byte of information from thedata register to acquire the conversion.Figure 6 de-
ADC to the PIC16F84. Similar tcsend_spi, picts how 16-bit and 20-bit conversion words are

receive_spi acquires this information one bit at astored in the microcontroller.

time MSB first. When the transfer is complete, the _
variables highbyte, midbyte, and lowbyte contairf*N <ernate method can be used to acquire a con-

the CS5525/6/9's 24-bit gain register. version. By setting the Port Flag bit (PF, the fifth
bit in the configuration register), SDO’s function is
Acquire Conversion modified to fall to logic 0 when a conversion is

. . . . complete (refer to Figure 5). By tying SDO to the
To acquire a conversion the subroutooavert is o] .
controller’s interrupt pin, conversions can be ac-

called.Convert sends the command-byte Ox0C to~ ",
. quired via an interrupt service routine.

the converter. This instructs the converter to per-

form a single conversion. Then the Done Flag (DF)

Command Time Data Time 24 SCLKs
8 SCLKs

Write Cycle
Figure 3. Write-Cycle Timing

SDI

Command Time
8 SCLKs

Data Time 24 SCLKs

Read Cycle
Figure4. Read-Cycle Timing

ANB88Rev2 3

y 4 Y I17 J J [A
F P AN88

s [IUUUUUY Uiy Uuy g

sDI
Command Time td* XINJOWR
8 SCLKs <« Clock Cycles
SDO ‘ 8 SCLKs Clear SDO Flag @.‘ ..@

* td = XIN/OWR clock cycles for each conversion except the Data Time
first conversion which will take XIN/OWR + 7 clock cycles 24 SCLKs

Data SDO Continuous Conversion Read (PF bit = 1)

Figure5. Conversion/Acquisition Cycle with the PF Bit Asserted
MAXIMUM SCLK RATE

M SB High-Byte
D19 [D18 [D17 [D16 [D15 [D14 [D13 [D12 | A machine cycle in the PIC16F84 consists 4 oscil-
Mid-Byte lator periods or 400 ns if the microcontroller’'s os-
[D11] D10 [D9 | f8 IBDt7 [D6 [D5 [D4 | Gijjator frequency is 10 MHz. Since the CS5525/6/
D3 [D2 | b1] Dgw-l yoe 0 [OD | OF | 9’s maximum SCLK rate is 2MHz, additional no
A) 20-Bit Conversion Data Word operation (NOP) delays may be necessary to re-
MSB High-Byte duce_ the t_ransfer rate if _the microcontroller system
[Di5 [D14 [Di3 [Di2 | DIl [Dio | D9 [b | 'equires higher rate oscillators.
Mid-Byte
D7 [D6 [D5 [D4 [D3 [D2 [D1 | bo | SERIAL PERIPHERAL INTERFACE
L ow-Byte

TT T T [T [1] 0] 0 [0D]OF] Tr_1e Ser?al Peripheral Interface (SP_I) developed for
B) 16-Bit Conversion Data Word Microchip’s controllers wasn’t designed to be as

flexible as the SPI port on Motorola’s 68HCO05. To

o get the Microchip’s SPI port to function with the
OD - Oscillation Detect, OF - Overflow CS5525/6/9, the port needs to be initialized to idle
Figure 6. Bit Representation/Storagein Pl C16F84 high, and the CS5525/6/9’s serial port needs to be
reset anytime information is transmitted between

the microcontroller and the converter.

0- always zero, 1- always one,

DEVELOPMENT TOOL DESCRIPTION

The code in this application note was developed
usingMPLAB™ an integrated software
development package from Microchip, Inc.

4 ANB88Rev2

y 4 Y I17 J J [A
a 4 A Wy /i
1 4 /1) 4 a8/ /7 4

ANS8S8

CONCLUSION

This application note presents an example of how
to interface the CS5525/6/9 to the PIC16F84. It is
divided into two main sections. hardware and soft-
ware. The hardware section illustrates both athree-
wire and a four-wire interface. The three-wire is
PI™ and MICROWIRE™ compatible. The soft-
ware, developed with development tools from Mi-
crochip, Inc., illustrates how to initialize the
converter and microcontroller, calibrate the con-

verters offset, write to and read from the ADC’s in-
ternal register, and acquire a conversion. The
software is modularized and illustrates important
subroutines, e.gwrite register andread_register.
The software described in the note is included in
the Appendix at the end of this document.

SPI ™ s a trademark of Motorola.
MICROWIRE ™ is a trademark of National Semiconductor.

MPLAB™ is a trademark of Microchip.

ANB88Rev2

y 4 Y I17 J J [A
F P AN88

]
APPENDIX

PIC16F84 Microcodeto I nterface to the CS5525/6/9
chhkkhhkhkdhhdhhhdhdhhhhhhdhhdhhhhdhhdhhhdhhdhhhhhdhdhhdhhdhdhhhhhdhdhhdhdhhdhdddhdhhhdhdhrdhdrrdrdrhdk

* File: 55261684.asm

;* Date: November 15, 1996

;* Programmer:Keith Coffey

* Revison: 0

;* Processor: PIC16F84

;* Program entry point at routine "main”. The entry point is address 0x05.
;***
;* Program is designed as an example to interface a PIC16F84 to a CS5525/6/9
;* ADC. The program interfaces via a software SPI which controls the

;* serial communications, calibration, and conversion signals. Other ADC'’s

;* (16-bit and 20-bit) in the product family can be used.

R EEEEEE S E RS EEEEEEE LSS E LRSS SRR EEE LR R R R R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE T

rrERxxE* Memory Map Equates

INDF equ 0x00 ; Indirect Address Register

STATUS equ 0x03 ; STATUS register equate

FSR equ 0x04 ; File Select Register

PORTA equ 0x05 ; General Purpose I/0 Port

TRISA equ 0x85 ; Data Direction Control For Port A
RPO equ 0x05 ; Register Bank Select Bit

Cs equ 0x00 ; Port A bit O

SDI equ 0x01 ; Port A bit 1

SDO equ 0x02 ; Port A bit 2

SCLK equ 0x03 ; Port A bit 3

LED equ 0x04 ; Port A bit 4

TRUE equ 0x01 ; Representslogic 1

HIGHBYTE equ 0x0C ; Upper 8 bits of Conversion Register
MIDBYTE equ 0x0D ; Middle 8 bits of Conversion Register
LOWBYTE equ OxOE ; Lowest 8 Bits of Conversion Register
COMMANDBYTE equ OxOF ; One byte RAM storage location
TEMP equ 0x10 ; A Temporary Data Storage Register
COUNT equ 0x11 ; Used to store count for delay routine
SPDR equ 0x12 ; Reserved for Seria Peripheral Data Reg.
CARRY_BIT equ 0x00 ; Represents the Carry Bit in Status Reg.

6 ANB88Rev2

y 4 Y I17 J J [A
F P AN88

R R R R R R EEEEE RS EEREEEEEEEEEEEEEEEEEEEES
’

¥ Program Code

R E R RS EEEEEEEEEREREEES
’

processor 16C84 ; Set Processor Type
org 0x00 ; Reset Vector
goto Main ; Start at Main

rhhkkkkhkhkkkhhkhhkhkkhhhhkhhhhhhkhhhkhkhhkhkhkhhhkhkhhhkhkhhhkhkhhkhkhhkhkhkhhkhhhhkhkhkkdhkhkdhhkhkdhhkhkxkhkhkixkk,kx*x*%%

:* Routine - Main

¥ Input - none

;* Output - none

;* Thisisthe entry point to the program.

EEES S S S E LSS EELT ST S S EEST ST S LSS ELE LTSS ST E ST ST EESTEEEESTEEEEEE LS LS EEETEEEEEEEEEEEEEEEE LS
org 0x05

Main ; Start from Reset Vector

jrREERRRRE nitialize System and Perform SELF OFFSET Calibration

CALL initialize ; Initialize the system

CALL calibrate ; Calibrate the ADC Offset
grRxxkxkx \Writeto the GAIN Register

MOVLW 0x82 ; Prepare COMMANDBYTE

MOVWF COMMANDBYTE

MOVLW 0x80 ; Prepare HIGHBYTE

MOVWF HIGHBYTE

CLRF MIDBYTE ; Prepare MIDBYTE

CLRF LOWBYTE ; Prepare LOWBYTE

CALL write_register ; Write to Gain Register
jprxxxksx Read from the GAIN Register

MOVLW 0x92 ; Prepare COMMANDBYTE

MOVWF COMMANDBYTE

CALL read_register ; Read the Gain Register
jrrxkxkxx Parform Single Conversions
LOOP CALL convert ; Convert Analog input

goto LOOP ; Repeat Loop

kkkkkkkk End MAIN

ANB88Rev2 7

y 4 Y I17 J J [A
F P AN88

rhkkhkkkhhkkkhkkhkhhkkhhkhkhhkhhhkkhhhhhhhhhhhhhkhhkkhhhkhhhhhkhhkhhkkhhhkhhhhhkkhhkhhkkhkhhdhhhkhhkhhkhhkhkhhkhhkkkkrkx*%
’

* Subroutines

REEEEEEEEEEEEEEEEREREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]
’

R E R RS EEEEEEEEEREEESEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE S
’

;* Routine - initialize

¥ Input - none

;¥ Output - none

;* This subroutine initializes port A for interfacing to the CS5525/6/9 ADC.

;* It provides atime delay for oscillator start-up/wake-up period.

;* A typical start-up time for a 32768 Hz crystal, due to high Q, is 500 ms.

;* Also 1003 XIN clock cycles are alotted for the ADC'’s power on reset. The
;* total delay is 555 ms upon power-up (assume uC start-up time is zero).

rkkkkkkkkhhkhhhkhkhhkhkhkhkhkhhhhrrhhdkhhhkkhhhhhhkhhkhkhhkhkhhhhhhhhhkkhkkdhhhhrrrhhrhkhhhhrrrrrrrrxd
l

initialize CLRF PORTA ; Initialize PORTA by setting output
; data latches.
BSF STATUS, RPO ; Select Bank 1
MOVLW 0x04 ; Value used to initialize direction
MOVWF TRISA ; Set RA2 asinputs

; RAO, RA1, RA3, & RA4 as outputs

BCF STATUS, RPO ; Select Bank 0
BCF PORTA,SDO ; Clear SDO
MOVLW 0x32 ; Load W with delay count
CALL delay ; Delay, Power on Reset 1003 XIN
MOVLW OXFF ; Load W with delay count
CALL delay ; Delay, Oscillator start-up 158 ms
CALL delay ; Delay, Oscillator start-up 158 ms
CALL delay ; Delay, Oscillator start-up 158 ms
CALL delay ; Delay, Oscillator start-up 158 ms
MOVLW OxOF ; Reset Serial Port on ADC
MOVWF TEMP
BCF PORTA,CS ; Clear CS

loop MOVLW OxFF ; Load W with OxFF
CALL send_spi ; Send 15 OxFF through SPI
DECFSz TEMP,1 ; Decrement the counter
goto loop ; Repeat loop if counter not zero
MOVLW OXFE ; Load W with last byte
CALL send_spi ; Move OXFE to SPDR
BSF PORTA,CS ; Clear CS
RETURN ; EXit subroutine

8 ANB88Rev2

y 4 Y I17 J J [A
F P AN88

R R R R R R EEEEE RS EEREEEEEEEEEEEEEEEEEEEES
’

;* Routine - calibrate

¥ Input - none

;* Output - none

;* This subroutine instructs the CS5525/6/9 to perform self-offset calibration.

REEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEREEEEEREREEEE R TR EEEEREE R R R R
’

calibrate MOVLW 0x84 ; set command byte for config write
MOVWF COMMANDBYTE ; set COMMAND BYTE
CLRF HIGHBYTE ; clear HIGHBYTE
CLRF MIDBYTE ; clear MIDBYTE
MOVLW 0x01 ; get ready for self offset cal
MOVWF LOWBYTE ;set LOWBYTE
CALL write_register ; Write to Config Register
MOVLW 0x94 ; set command byte for config read
MOVWF COMMANDBYTE ; set COMMAND BYTE
poll_done: CALL read_register ; Poll done flag until cal complete
BTFSS LOWBYTE,3 ; repeat if flag not set
goto poll_done
RETURN ; Exit subroutine

R EEEEEE S E SRS TS S L LSS EEE LSS SRR EEE LS SRR SRR RS EEEEEEEEEEEEEEEEEEEE LSRR SRR R
)

;* Routine - convert
¥ Input - none
;* Output - Conversion results in memory locations HIGHBY TE, MIDBY TE and

¥ LOWBYTE. Thisalgorithm performs only single conversions. If

¥ continuous conversions are needed the routine needs to be

¥ modified. Port flag is zero.

¥ HIGHBYTE MIDBYTE LOWBYTE
¥ 7654321076543210 76543210

;* 16-bit results MSB LSB1111000D OF
;* 20-bit results MSB LSB 00 OD OF

;* This subroutine initiates a single conversion.

rkkkkkkkkhkhkhhhkhhhhkhkhkkhhhhrrhkhhkhhkhhkhhhhhhkhhkhkhkhhhhhhdhhhhhkhkhkhkdhhhhhhhhhhhkkhhhhhrrhrrrrxd
’

convert MOVLW 0xCO ; Set COMMANDBY TE for single CONV
MOVWF COMMANDBYTE
BCF PORTA,CS ; Clear Chip Select
CALL send_spi ; Transmit command out SPI
MOVLW 0x94 ; Set command byte for config read
MOVWF COMMANDBYTE ; Send COMMAND BYTE

donel CALL read register ; Poll done flag until CONV complete
BTFSS LOWBYTE,3 ; Repeat if Done Flag not Set
goto donel
MOVLW 0x96 ; Set Byte to Read Conversion Reg.
MOVWF COMMANDBYTE ; Store COMMAND BYTE
CALL read register ; Acquire the Conversion
BSF PORTA,CS : Set Chip Select
RETURN ; Exit subroutine

ANB88Rev2 9

y 4 Y I17 J J [A
F P AN88

rhkkhkkkhhkkkhkkhkhhkkhhkhkhhkhhhkkhhhhhhhhhhhhhkhhkkhhhkhhhhhkhhkhhkkhhhkhhhhhkkhhkhhkkhkhhdhhhkhhkhhkhhkhkhhkhhkkkkrkx*%
’

;* Routine - write_register
* Input - COMMANDBYTE, HIGHBYTE, MIDBYTE, LOWBYTE
;* Output - none

-k

;* This subroutine instructs the CS5525/6/9 to write to an internal register.

REEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEREEEEEEEEEEEEREEREEEEEEEEEEEEEEREEEEEEEREEEE R RS
)

write_register BCF PORTA,CS ; Clear Chip Select
MOVF COMMANDBYTE,0 ;LoadW with COMMANDBYTE
CALL send_spi ; transfer byte
MOVF HIGHBYTE,Q ; Load W with HIGHBYTE
CALL send_spi ; transfer byte
MOVF MIDBYTE,O ; Load W with MIDBYTE
CALL send_spi ; transfer byte
MOVF LOWBYTE,Q ; Load W with LOWBYTE
CALL send_spi ; transfer byte
BSF PORTA,CS ; Set Chip Select
RETURN ; Exit Subroutine

chkkhkkkhkhkkkhkkhkkhhhkhhkhhhkkhhkhkhkhkhhhkhhkhhhhhkhhkhkhhkhkhhkhhkhhhkhhkhdhhkhhkhkhhkhhhkhhkhhhdhhkhdhhdhhhdhkkhhhdhhrkhdddhxdxkx
;* Routine - read_register

¥ Input - COMMANDBYTE

;* Output - HIGHBYTE, MIDBYTE, LOWBYTE

;* This subroutine reads an interna register of the ADC.

REEREEEEEREREEEEEEEEEEEEREEEEEEEEEEEEEEEEE RS
l

read_register BCF PORTA,CS ; Clear Chip Select
MOVF COMMANDBYTE,0 ;Load W with COMMANDBYTE
CALL send_spi ; transfer byte
CALL receive_spi ; receive byte
MOVWF HIGHBYTE ; Move W to HIGHBYTE
CALL receive_spi ; receive byte
MOVWF MIDBYTE ; Move W to MIDBYTE
CALL receive_spi ; receive byte
MOVWF LOWBYTE ; Move W to LOWBYTE
BSF PORTA,CS ; Set Chip Select
RETURN ; Exit Subroutine

10 ANB88Rev2

y 4 Y I17 J J [A
F P AN88

. __|
R EEEE S S S LSS S LSS ST EEE LSS RS TEEEEEEEE SRR RS EEEEEEEEEEEEEEEEEEE LR R RS S
;* Routine - send_spi
* Input - Byte to be transmitted is placed in W
;¥ Output - None
;* This subroutine sends a byte to the ADC.

REEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEREEEEEREREEEE R TR EEEEREE R R R R
’

send_spi: MOVWF SPDR ; Move W to SPDR
MOVLW 0x08 ; Set COUNT to count to 8
MOVWF COUNT ; to transmit byte out SPI
BCF PORTA,SCLK ; Clear SCLK

wait0 ; Send Bit
RLF SPDR,1 ; Rotate SPDR, send MSB 1st
BTFSC STATUS,CARRY_BIT ; If bit low skip next instruct.
BSF PORTA,SDI ; Set SDI
BTFSS STATUS,CARRY_BIT ; If bit high, skip next instruct.
BCF PORTA,SDI ; Clear SDI
BSF PORTA,SCLK ; Toggle Clock
BCF PORTA,SCLK
DECFSz COUNT,1 ; Loop until byteistransmitted
goto wait0
BCF PORTA,SDI ; Return Pin low
RETURN ; Exit Subroutine

RESEEREEEEEE TR RS EEEEEEEEEEE R R RS
1

;* Routine - receive_spi

¥ Input - none

;* Output - Bytereceived is placed in W

;* This subroutine receives a byte from the ADC.

kkkkkkkhhhkhhkhh bk hkhkhkhkhhhhb bbbk kkkhhhh bk hkkdkhdkhhhhhhhkhhkkkkkdhhhhhhhhdhdrdhdrhhhdrrrrrrrxxd
l

receive_spi: MOVLW 0x08 ; Set COUNT to count to 8
MOVWF COUNT ; to transmit byte out SPI
BCF PORTA,SCLK ; Clear SCLK

waitl: ; Receive bit
BTFSC PORTA,SDO ; If bit low skip next instruct.
BSF STATUS,CARRY _BIT ; Set SDI
BTFSS PORTA,SDO ; If bit high, skip next instruct.
BCF STATUS,CARRY_BIT ; Clear SDI
RLF SPDR,1 ; Rotate SPDR, Receive M SB 1st
BSF PORTA,SCLK ; Toggle Clock
BCF PORTA,SCLK
DECFSz COUNT,1 ; Loop until byteistransmitted
goto waitl
MOVF SPDR,0 ; Put byte attained in W
RETURN ; Exit Subroutine

ANB88Rev2 11

y 4 Y I17 J J [A
F P AN88

;***
;* Routine - delay

* Input - Count in register A

;* Output - none

;* This subroutine delays by using count from register W. The PIC16F84

;* development board uses a 10 MHz clock (E = 2.5 MH2z), thus each cycleis

;* 400 nS. This delay is approximately equivaent to

;* (400ns)* (1545)* (count value), (acount of 720 provides a 445ms delay).

kkkkkkkkhhkhhhkhkhkhkhkhkhkhkhhhhrrhh sk khkkhhhhhhkhkhkhkdhkdhhhhhhhhhhkkhkkdhhhhrrrhkdkdkkhhhhrrrrrrrxxd
l

delay MOVWFCOUNT ; Put the delay count into COUNT
outlp CLRF TEMP ; TEMP used as inner loop count
innlp NOP ; Lcycle
NOP ; 1cycle
NOP ; 1cycle
NOP ; 1cycle
DECFSz TEMP,1 ; FF-FE, FE-FD,1-0 256 loops
; 10 cycles* 256* 500ns=1.28 ms
goto innlp ; If count not done repeat loop
DECFSz COUNT,1 ; Countdown the accumulator
goto outlp ; 2569 cycles*500nst A
RETURN ; Exit subroutine

R EEEEEEEEEE ST EEE LS LSS EEE LSS SRR EEEEE SRR R R RS EEEEEEEEEEEEEEEEEEEEEEEEEEEE ST
)

* Interrupt Vectors

REEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEREEEEEREREEEEEEEEEEEEEEEEEEEEEEEEEEEEEE RS
l

NOT_USED RETFIE

ORG 0x04 ; Originate Interrupt Vector here
goto NOT_USED ; No Interrupts Enabled
end ; End Program Listing

12 ANB88Rev2

e Notes

	note-cry.pdf
	Notes Page -
	PAGE BREAK -

